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ABSTRACT

This report is divided into four parts: Part-I provides an introduction to

plunging jet phenomena and summarizes the major findings of our previous

research. Part-II presents a summary of the major experimental findings

obtained during at Rensselaer. Part-III describes two proposed mechanisms

responsibles for air entrainment. Part-IV presents the results of two different

numerical calculations, one using a Euler-Lagrangian approach and the other

based on solving a full two-fluid model with a CFD code. Finally Part-V gives

conclusions and recommendations for future research.

PART-I: INTRODUCTION

The gas entrained by a plunging liquid jet and the resultant two-phase jet

-d dispersion occur in many problems of practical interest. In particular, the air

a) o entrainment process due to the breaking bow waves of surface ships may cause

long (ie, up to 5 km in length) wakes. Naturally easily detectable wakes are

s • undesirable for naval warships. The ecological balance in lakes and oceans is
.• also dependent on the amount of dissolved oxygen. A good understanding of the

air carryunder and bubble dispersion process associated with a plunging liquid

jet is vital if one is to be able to quantify such diverse phenomena as sea surface

chemistry, the meteorological significance of (breaking) ocean waves, the
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performance of certain type of chemical reactors, the "greenhouse" effect (ie, the

absorption of C02 by the oceans), and a number of other important maritime-

related applications. Significantly the absorption of greenhouse gases into the

ocean has been hypothesized to be highly dependent upon the air carryunder that

occurs due to breaking waves. This process can be approximated with a plunging

liquid jet (Monahan [1991], Kerman [1984]). In addition, the air carryunder that

occurs at most hydraulic structures in rivers is primarily responsible for the

large air/water mass transfer that is associated with these structures (Avery and

Novak [1978]).

Also, air entrainment plays an important role in slug flow phenomena in

conduits. Indeed the liquid film surrounding the Taylor bubble has a mean flow

in the opposite direction from the Taylor bubble. This liquid forms a type of

plunging jet that produces a surface depression in the rear part of the Taylor

bubble. When the annular liquid jet exceeds a critical velocity, the plunging liquid

jet entrains into the liquid slugs small bubbles from the air in the Taylor bubble.

These bubbles follow and may coalesce with the Taylor bubbles.

A number of prior studies have been performed in which axisymmetric

plunging liquid jets have been used to investigate the air carryunder process.

These include the work of Lin & Donnelly [1966], Burgess et al (1972], Van De

Sande & Smith [1973], Koga [1982], McKeogh & Ervine [1981], and Detsch &

Sharma [1991], Ohkawa et al [1986] Ervine et al [1980], McKeogh & Elsaway [1980],

Ervine & Falvey [1987], Blanchard & Cipriano [1981], and Sene [1988].

The primary objective of the experimental research was to obtain detailed 1

local data in the two-phase flow region of a plunging liquid jet that could be used

to validate multidimensional two fluid model CFD calculations. We have

measured the local (turbulent) velocity of the liquid, the velocity of the gas bubbles, ,16ty Codes
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the bubble size distribution for bubbles smaller than about 1.0 mm and the void

fraction of the gas phase. The combined probability density function of the bubble

size and velocity has not been measured before. The probability density function

for bubble diameter is needed to compute the interfacial area density, an

important parameter which helps determine the mass, momentum and energy

transfer characteristics of a two-phase flow. The probability density function of

the bubble velocity is needed to estimate the total time that the bubbles remain

submerged and therefore able to transfer mass, momentum and energy.

The spreading of a two-phase jet involves the interaction between the liquid

turbulence and the bubbles. This problem can not be solved analytically. However

surface depression and air entrainment can be modeled using simplifications,

such as inviscid-irrotational flow theory.

Recently Lezzi and Prosperetti (1991) have proposed that the instability

responsible for the air entrainment was caused by the gas viscosity. In

particular, they studied the linear stability of a vertical film of a viscous gas

bounded by an inviscid liquid in uniform motion on one side, and by inviscid liquid

at rest on the other side. In the long wavelength asymptotic limit, the gas film

behaves as a single surface and thus they obtained the classical Helmholtz result

when only a surface is present. They also obtained the marginal stability

boundary with the gas gap width, 8, as the control parameter (i.e., they

numerically compute for a given 8 the range of wavelength that makes the system

unstable).

For the computation of jet dispersion it is important to appropriately model

the turbulent intensity of the continuous phase. Single-phase turbulent jets

represent an important class of free shear flows that have been studied in the past

to develop and test turbulence models [Abramovich, 1963]. More recently,
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turbulent jets have been evaluated numerically using computational fluid

dynamic (CFD) techniques for various turbulence models. Rodi [1984] presented

results using the classical k-e model of Gibson & Launder [1976], and showed that

k-e models may not accurately predict jet spreading. Rodi [1984] proposed that the

constant C. in the model for turbulent viscosity was really a function of the ratio

between turbulent production and dissipation. This involved the development of a

new function which produced better results. Sini and Dekeyser [1987] solved the

single-phase turbulent jet using Rodi's k-c model [Rodi, 1984]. This model

compared favorably with the experimental results of the single-phase turbulent

jet as well as with other more detailed algebraic stress models. Hence it appears

that in some cases turbulent nonisotropy is not important and need not be

modeled.

Significantly, it has been found that single-phase turbulent jet data can be

used for the assessment of turbulence models because one does not have to

constitute complicated turbulent closure laws near solid (no slip) boundaries.

Indeed, due to the absence of walls and the associated shear boundary conditions

the turbulent jet is probably the simplest non-trivial case to analyze.

Interestingly, the same conclusions can be reached for a two-phase turbulent jet.

In most of the previously menticned research, the flow field was considered

to be thin in the lateral direction and the flows were characterized by a relatively

small lateral velocity when compared to the streamwise velocity. This is

equivalent to considering the flow (ie, the liquid jet) to be a boundary layer. Hence,

the flow is often assumed to have a negligible pressure gradient in the lateral

direction, and thus the pressure in the boundary layer can be imposed by the

external flow. From the mathematical point of view, this approximation changes

the problem from an elliptic to parabolic one in the streamwise direction. From
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the computational point of view, when using a boundary layer approximation the

pressure distribution has to be prescribed. That is, the static pressure as a

function of the streamwise coordinate has to be known and supplied to the

computational fluid dynamic (CFD) code.

Depending on the variables of interest, approximating the jet as a boundary

layer may be a reasonable approximation. However, the lateral velocity at the

edge of the jet (i.e., the entrainment velocity) may be much larger than the

streamwise velocity. Moreover, for a planar jet the entrainment velocity remains

finite as the integration domain in the lateral direction is enlarged.

In this work we did not make the boundary layer approximation. Rather,

we assumed an elliptic problem for both the gas and the liquid phases. Solving

the partial differential equations as an elliptic system increases the complexity of

the numerical problem but provides more detailed and accurate information on

the flow field than a parabolic scheme. One of the advantages of the elliptic

solution is that the streamwise pressure distribution does not have to be provided.

This has two effects, first we are able to compute recirculation, and second, we

are able to calculate the buoyancy-induced reversal of the bubble motion. These

two important effects cannot be computed using a parabolic approach.

In parabolic single-phase jet calculations using a k-e model, Sini &

Dekeyser [1987], and Hossain & Rodi [19821 found satisfactory agreement between

calculations and experiments, except for a small region near the jet inlet. Their

good results are due in part to the fact that they analyzed a free jet which was only

weakly nonisotropic. The next level of complexity for simulating turbulent two-

phase flows is the use of an Algebraic Stress Model (ASM). Several different

models have been proposed in the literature. For the particular case of a planar

jet, performance of the ASM is similar to the k-c model. One might expect that
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the nonisotropic ASM model would produce better results than the isotropic k-E

model for the pressure distribution. However, when we used the ASM proposed

by Gibson & Launder [1976] for the evaluation of a planar jet the computed

streamwise-pressure distribution [Bergstrom, 1992] was virtually the same as

when a k-c model was used.

Thus, for simplicity, we have used a k-e model in the computations

presented in this report. We note that the turbulence present in the liquid has two

components in a two-phase jet. One component, the shear-induced turbulence, is

due to viscosity and it is present in both single and two-phase flows. The other

component is the bubble-induced turbulence due to slip between the bubbles and

the surrounding liquid, and it only occurs in two-phase flows.

PART-Il EXPERIMENTAL RESULTS

As shown in Figure-I, a converging nozzle oriented vertically produced an

axisymmetric liquid (ie, water) jet. This jet impacted at 900 a pool of water and,

when a threshold velocity was exceeded, it was observed that the plunging liquid

jet caused air entrainment. In agreement with the observations of McKeogh &

Ervine [19811, different two-phase jet characteristics were noted, depending on the

turbulence intensity of the plunging liquid jet. For a laminar liquid jet (ie, one

having a turbulence intensity less than about 0.8%) the diameter of the entrained

bubbles were in the range 15-300 tIm. On the other hand, for liquid jet turbulence

intensity of about 3%, the entrained bubbles had diameters in the range of 1-3 mm.

Our definition of a rough and smooth jet should be considered only as an easy way

to refer to one particular turbulence intensity. In particular, rough (smooth)

means a turbulence intensity of about 3% (.8%). Another candidate for the

distinction was the Reynolds number. However, this is not appropriate because

after the contraction, with the same Reynolds number we may have different
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turbulence intensity and these different turbulence intensities generate

qualitatively different two-phase flows.

Figure-1 also shows a schematic of the test loop. A screw pump was used to

force the water through the nozzle as well through a bypass. The pump had a

speed controller which was used to make the coarse control of the liquid flow rate

through the nozzle. In the bypass a valve was used for the fine control of liquid

flow rate. In order to damp out any flow oscillations, an accumulator was placed

on the discharge side of the pump.

The acrylic conical nozzle, shown schematically in Figure-2, consisted of

an arrangement of honeycombs and screens followed by a smooth contraction. In

this way the turbulence level of the liquid jet could be parametrically varied. The

exit diameter of the nozzle was 5.1 mm, and this produced a liquid jet of about the

same diameter. The acrylic tank which contained the water pool had

dimensions, 0.914 x 0.916 x 1.465 = 1.265 m3. The suction of the tank was put as

far from the liquid jet impact point as possible in order to minimize the influence

of this flow on the two-phase jet.

A DANTEC Fiber-Flow Laser Doppler Anemometer (LDA) system was used

to nonintrusively measure the liquid and gas velocities (both the mean and

fluctuations). This system consisted of submersible transmitting and receiving

optics.

The receiving optics used for the smooth jet employed a Fiber Phase Doppler

Anemometer (FPDA) system with 600 mm focal length lenses and a special

aperture plate to maximize the bubble size range. The axial velocity of the liquid

jet was used as the master signal for data collection. The collected light was

transmitted through three optical fibers to a special FPDA device having three

photodetectors for bubble size measurement.
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The signals collected by the AT computer consisted of the:

- arrival time of the particles

- transit time of the particles

- velocity of the particles

- equivalent diameter of the particles

Two different methods were used for the measurei At of void fraction in

the two-phase jet: a KfK impedance probe and the particle time fraction from the

FPDA. The impedance probe consists of two electrically isolated electrodes; one at

the tip of the probe and another downstream electrode which was always in

contact with the liquid in the pool. The liquid (ie, water) had a relatively high

electrical conductivity and thus when the tip was in contact with the liquid a

relatively high current flows through to a Wheatstone bridge circuit. The

difference between the conductivities of the liquid and gas phases produced a

different signal depending on whether there is liquid or gas present at the tip of

the probe. The active element of the probe's tip was 150 gtm in diameter and it was

calibrated with bubbles having diameters in the 1-3 mm range. This type of probe

is a standard tool used for measuring local void fraction in air/water bubbly flows

[Hewitt, 19781.

The KfK impedance probe was used to measure the void fraction in the

rough jet (which had bubbles of diameter in the range 1-3 mm) because the size of

bubbles produced was out of range of the FPDA (ie, the air bubbles were too large

for the lens size used). In contrast, for the measurement of void fraction when a

smooth liquid jet was tested, the impedance probe could not be used because the

size of the bubble were the same order of magnitude as the size of the tip (ie, the

air bubbles were quite small). However, the FPDA could be, and was, used to

measure the size distribution of the bubbles in this case.
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The FPDA was calibrated using a suspension of polystyrene particles

which had a diameter of 9.5 gim ± 0.5 gxm, and a rotating steel ball of diameter

0.4 mm.

The LDA/FPDA system and the KfX impedance probe were mounted on a

Benjamin Systems three-dimensional traversing mechanism having a 1 gim

positioning resolution. The tip of the KfK impedance probe was positioned 0.3 mm

under the measurement volume of the LDA/FPDA system for void fraction

measurements when a rough jet liquid was tested.

The turbulence intensity of the liquid jet at the nozzle exit was found to be

one of the most important parameters affecting jet roughness and the size of the

bubbles entrained by the plunging liquid jet. An arrangement of honeycombs and

screens were used to control the turbulence intensity of the flow entering the

conical nozzle.

Figure-3 depicts a contour plot of the two-dimensional probability density

function of the particle diameters (dp) and axial velocities (uz). Quantitatively the

most probable value of peak #1 was at, dp = 5 gm, uz = 4.05 m/s, and the most

probable value of peak #2 was at dp = 125 pm, uz = 3.5 mis.

Figure-3 indicates that the velocity of the bubble was not dependent on its

size. If the velocity of the bubbles had changed with size we would see the iso-

count curves with their principal axes forming an angle with the horizontal.

There is no such trend seen in Figure-3.

Figure-4 shows the liquid velocity histogram at the centerline of the liquid

jet for a flow rate of w = 0.144 kgls, a distance from the nozzle to the undisturbed

pool surface of h = 30.0 ± 0.3 mm, and a distance from the pool surface to the

measurement volume of z = 33 mm. The mean axial velocity is, ul = 4.96 m/s.

One of the main differences between a rough liquid jet and a smooth jet is that in
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the latter case the liquid flow field is practically unaffected by the bubbles while in

the former, the bubbles are much larger, thus the discrete phase increases the

continuous phase's turbulence intensity. This also increases phasic momentum

exchange resulting in greater dispersion of the two-phase jet and a lower velocity

of the liquid velocity.

Figure-5 presents the liquid and gas velocity as a function of radial

position (r) for h = 17.3 mm, wl = 0.125 kg/s and z = 50.0 mm. We see that at the

edge of the spreading two phase jet that the gas (bubble) velocity is negative,

indicating buoyancy-driven countercurrent flow. It was also found that the two-

phase jet was more dispersed than the corresponding single-phase flow case and

that the turbulence intensity was higher. The turbulence enhancement is due to

bubble-induced turbulence. In this case the bubble-induced turbulence accounts

for about 30% of the total turbulence level.

As noted previously, when the liquid jet impacts the pool surface, air

entrainment occurs around the jet's circumference. In Figure-6a the measured

local void fraction is presented as a function of r for z= 1 mm (i.e. with the probe

1 mm under the undisturbed liquid level). We see that the void fraction has a

maximum at r _ diet/2 =_ 2.5 mm. Obviously, the air entrainment process is

responsible for this effect. In the high speed video visualization of these

experiments it was rare to observe bubbles at the liquid jet's centerline for z < 10

mm. However, once the air was entrained, dispersion of the gas phase occurred

as z was increased. Figure-6b shows how the void peaks in Figure-6a was

dispersed at z = 18 mm. We see that the maximum now occurs at r = 5 mm.

Moreover, we see that there is significant void fraction at r = 0 (ie, the jet's

centerline) because of the void dispersion process. Figure-6c shows the void

fraction profile at z = 43 mm. Significantly, the curve now has a maximum at the

10



centerline of the jet (r = 0). Again, this is a direct result of the void dispersion

process in the two-phase jet.

Figures-7a, 7b and 7c present the axial liquid velocity (ul) as a function of

the radial distance r for three different distances (z) from the undisturbed pool

level. Figure-7a is a measurement of the liquid velocity profile at the exit of the

nozzle. This flat profile is characteristic of the potential flow which exited from

the nozzle.

Figures-7b and 7c show that the liquid velocity curves have a maximum at

the centerline for all z. Comparing these two profiles one can easily see how the

two-phase jet spreads.

Figure-8 presents the liquid and gas phasic mean velocities as a function of

the lateral position (y) for a distance between the nozzle exit and the undisturbed

pool level of h=8.5mm, a liquid jet flow rate of, w=1.8 kg/s, and a submergence of,

z=31mm. We see that at the centerline the relative velocity is approximately

0.28m/s. This is very close to the terminal velocity in water of a gas bubble having

a 3 mm diameter. The ensemble averaged two-fluid model presented in Part-IV

predicts that at a symmetry plane (where all lateral velocity gradients are zero

due to symmetry) the relativ- velocity in the axial direction is determined by a

balance between buoyancy and drag (ie, the same forces that determines the

terminal velocity). Our experimental findings support this conclusion.

We see in Figure-8 that at the edge of the spreading jet the gas velocity is

negative, indicating buoyancy-driven countercurrent flow. It was also found that

the two-phase jet was more dispersed than the corresponding single-phase flow

case. This is presumably due to the fact that the presence of the gas phase

obstructs a fraction of the flow area for the liquid producing an additional

acceleration of the liquid and therefore a larger momentum interchange with the

11



liquid pool. We also observe that the turbulence instensity was higher than in the

single-phase flow due to bubble-induced pseudoturbulence.

Figure-9 shows the void fraction as a function of the lateral position (y) for

three different axial location (z). The spreading of the dispersed phase (ie, the

bubbles) can be easily seen in these plots. Figure-9 also shows the curve for

z=lmm (ie, the probe 1mm under the surface) where one can see a void fraction

peak at about y=3.5 mm. This peak is close to the liquid jet's edge (y=2.05mm) and

most of the air is entrained in the peak neigborhood. For y=Omm (centerplane) at

z=lmm the void fraction has a minimum. This point corresponds to the liquid

jet's center impacting the probe and threrefore the bubble population there is

very smallsince little lateral dispersion has ocurred. Finally Figure-9 shows how

the void fraction peak off the centerline is reduced as we move down into the pool

and also shows significant void dispersion. Figure 10 depicts the centerline void

fraction as a function of the axial position. We can also see here the local void

fraction builds up.
PART-III: ANALYTICAL RESULTS

The objective of this section is to evaluate the induced surface depression

caused by a plunging plane liquid jet. We have assumed that both fluids are

inviscid and irrotational, and that the gas region is at constant pressure. Hence

the appropriate equation for this problem is Laplace's equation for the liquid and

the associated interfacial jump condition. The problem may be described by two
1 2SPe ve xo Peg Xo

parameters, the Weber number, We = a , and the Bond number, Bo= 1

where x. is the half-width of the plunging liquid jet, v, is the velocity of the liquid

jet, p, is the density of the liquid, g is the gravitational acceleration, and a is the

surface tension.

12



We have used non-singular perturbation techniques to analyze the problem.

That is, we have expanded the solutions for relatively small We, and substituted

these expressions into Laplace's equation and the interfacial jump condition.

Equating terms of the same order in We, we obtained a recursive system of

equations, which were solved numerically up to third order.

For the assumption of irrotational, inviscid flow the governing equations for

the liquid field are,

V2 ()

where ' is the stream function. The two velocity components are then given as,

i= (2)

_ (3)
ai

where Ci and Q are the velocity components along the horizontal i and vertical

axis, respectively. If we prescribe a value of i, or its derivative normal to the

surface, a_•, for every point on the boundary, we have a well-posed problem. As

shown in Figure-11, the plane i = 0 is a symmetry plane. Thus the transverse

lateral velocity, u^, must vanish for every g at £ = 0. That is, from Eq. (2),

S= ,) = ýi (i = 0 , ^) = 0 (4)•(4)

on the centerline of the plunging liquid jet. We know that the axial velocity must

be v, at points where the jet is impacting. From Figure-l1 and Eq. (3), we see

that:

13



•' 0 £ 0,:=0=- " (0 <X^ < xo,• -O=v (5)V
(0<^< Y=O= ax(5)

For i > xo, the free surface position, A (i), must be coincident with a streamline.

Without loss of generality, we can make the free surface coincident with the

streamline j =0. Then,

(=0 (6)

We assume that the pressure in the gas region is constant and equal to zero. The

liquid pressure right under the surface is related to the curvature of the surface

by:

d•r

(di 2•32= •( •() (7)

1 +t j

Bernoulli's equation for the liquid pressure gives

T()= P[i12 (•i,(i)) +V 2 (if(f))] + PI g^(x) (8)

We may make Eqs. (l)-(8) nondimensional, using xo as the length scale and, v, as

the velocity scale, respectively. Thus we have:

V2V =0 (9)

with boundary conditions,

-y(x = 0, y) =0 S0 (l0a)

V (x, y-4-) = 0 (10b)
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AV (x--*.,y) = 0 (10c)

S(x, y=0) = 1 0 < x < 1 (10d)ax

V(x'i (x)) = 0 1<x (10e)

where,

x= x 0 Yx y=/xo =/xo

U = v = v=/vt and N'
I' I XOVI

The velocity components may now be computed from the stream function using

Eqs. (2) and (3) as,

u(x,y) = -w (xy) (11)

v(x,y) = - a (x,y) (12)"ax

We shall solve the problem for small We using a perturbation analysis.

First, we may expand all the dependent variables in terms of We obtaining:

n

TO(x) = X Wei Tli(x) + O(Wen+1 ) (13a)
i=1

n

•€(x,y) = I We i Vi(x,y) + O(Wen+l) (13b)
i=O

Substituting eqs. (13) in eqs. (10) and collecting terms of the same order in We we

obtain the following boundary conditions for x > 1,

Vo(xO) = 0 (14a)
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AV1(x,O) = Ut0111 (14b)

u ~ N~O 2)
A2(xO) = 111( + U0 q 2 + 2a (14c)

u laui 2 auo 1 a2 uo 3
-3(X 0 )- 3 + u1T12 + u2Tl 1 + •- T1l + -y-T11'2 + •-•-TI3 (14d)

Notice that vi=has homogeneous boundary conditions for i > 1, except for x >_ 1,
where its value is given by Eqs. (14).

Substituting eqs. (13) in eq. (7) and collecting terms of the same order in We we

obtain the following boundary conditions for x > 1,

2 = Bo o10  
(14a)

(X2

d2_tI 2 2
= (uo + vo) + Bo i1  (14b)

d2r

S2o0 -y-Tll+UiJ+2v°( Tl+vIJJ+BoT12 (4)

dx2 -

The boundary conditions for these ordinary differential equations are:

tli (x-->.) = 0 (15a)

S(x--ý) = 0 
(15b)

Equation (15b) results in the following ordinary differential equation,

2 2
TIJ"'-Bot 1=-(uo +vo) (17)

for the interval 1 < x < D with the boundary conditions,

%1 (x=D) = 0 (18a)
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dT x=)= (18b)
41xl (x-D)=0

Equation (17) has an integrable singular point at which x=1. We have

numerically evaluated Eq. (17) using a Runge-Kutta (RK) algorithm with adaptive

stepsize. Figure-12 shows 'n, as a function of x.

Figure-13 shows the position of the interface Tl as a function of the lateral

position x for values of the Weber number in the range (0.1 to 0.8]. We now

analyze the behavior of the rI(x) as we move from the rightmost position in the plot

(x=1.1) to lower values of x. For We = 0.1, ii(x) increases as x approaches the jet

impact point x = 1 without any local minimum (ie, no surface depression is

present). For We = 0.8, on the other hand, as x is decreased we first have a local

maximum in ., (,,max), and then a local minimum, (lmin ). We define the depth

of the surface depression, d, as:

max min
d = i -T (61)

Figure-14 shows the depth of the depression, d, as a function of the Weber

number, We. There is no depression (ie, d=0) up to a critical Weber number

(Wed. For We larger than the critical value, the depth of the depression increases

rapidly with the We.

The depression width 8 is defined as the gas gap corresponding to a

depression of d/2. Figure-15 shows 8 as a function of We. We see that for high

We, 8 levels off to a value of about 0.013.

DISPERSION ANALYSIS

Figure-16 shows a typical plunging liquid jet. The axisymmetric liquid jet

leaves the nozzle with an angle 0', diameter Dj and velocity u'. The jet velocity,

diameter and impact angle are modified by gravity; the values at the pool level
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being uy, D and 0, respectively. The jet's inertia produces a meniscus on the

surface of the pool. It is proposed that the gas entrainment is produced by an

instability of the gas/liquid interfaces. The destabilizing factors are the liquid jet's

velocity and gravity.

The situation is idealized as shown schematically in Figure-17. Because

the induced air gap is very small compared to the diameter of the jet (D), cartesian

symmetry is assumed. Region 1 is the half width of the liquid jet (h, = D/2),

region-2 is the gas gap, h 2 a-5, and region-3 is the liquid pool's width (h3 =

u3 =0).

The following hypotheses are made:

(i) The fluids are inviscid, incompressible and the flow is irrotational.

(ii) All interfaces are planar.

(iii) The component of the gravity in the y-direction affects the stability of

the flow. The effect of the gravity in the x-direction is to accelerate the

flow (i.e., to make h 1, h2 and h 3 functions of x). Because the region of

interest in the x-direction is small, this effect has been neglected.

(iv) A sinusoidal perturbation of amplitude "a" is imposed on interface

A. This produces a perturbation of amplitude "b" on interface B.

Both perturbations travel with celerity C.

k further assumre that amplitude "a" is small enough in order to

assure the validity of linear analysis. If we make a Galilean transformation with

velocity C, the perturbations are standing waves and the velocity of the fluids , re:

(u1 - C), (u2 - C), (u 3 - C), in regions 1, 2 and 3, respectively.

The appropriate conservation laws are given below:

Massq Conservation

VO.u = 0 (19)
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where we have assumed that the fluids are incompressible. Since the flow is also

assumed to be inviscid and irrotational, Eq. (19) reduces to:

V2 =0 (20)

where, u = - Vý, and ý is the velocity potential.

M ntum C_ srvation

-+aI 1 (21)

hence,

-o + 2i + pip + gyy = const. (22)

where,

u=-o ='0y V= -0=V (23)

Using eqs. (22) and (23) and complex variables we obtain the following

dipersion relationship:

1-; 12 k2 + (u, - 0)2 kpl coth (kh1) + (u2 - C)2 kP2 coth (kh2) - gy(P 2 - Pi)]

X [1- 23 k 2 + (u3 - C)0 kP3 coth (kh3) + (u2 - C)2 kP2 coth (kh2) - gy(P 3 - P j
4 2 2

(u3 - C) k P2 cosech(kh 2) (24)

Equation (24) gives the wave velocity, C, for a given wave number, k. If the

solution of Eq. (24) for C is a complex number with a negative imaginary part (ie,

C, < 0) then the system is unstable, since this implies exponential growth of the

form, Exp[-Clkt].
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Equation (24) is a more general solution than the problem of interest,

nevertheless it can be reduced to the plunging liquid jet case by noting.

h 1 = D/2 uI = u Pi = P3 PI

h3 = 00 u3 = 0 P2 = Pg (25)

Y12 = I23 = (I P gPI <<«1

Hence, the dispersion relation becomes:

I I 2O (6

The four solutions of Eq. (26) are:

C =_ (27a)

C =u+ (20- g sineJ (27b)

k coth(k)

The first two solutions in Eq. (27a) are always real and therefore they do not

produce interfacial instability. In contrast, one of the two roots in Eq. (27b) leads

to unstable wave growth if,

S p sin9 (28)

GAS ENTRAINMENT RATE

We now have all the elements necessary to calculate the volumetric flow

rate of air, Qa" Figure-18 presents a schematic of the air entrainment process.

Two interfacial waves of small amplitude, but wave number kd, grow as they
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move with speed C. At a certain position they touch each other entrapping a

volume of air proportional to the shaded area. The shaded area, A, is given by:

f 2J ~(-o~ dx = Xd
0

The corresponding volume of entrapped air is,

V = xDA = xSDXd

Finally, the volumetric air flow is given by:

Qa = A nD XdC = n8DC (29)

Figure-19 shows the volumetric flow rate of air, Qa, measured by McKeogh

& Ervine (1981) as a function of the liquid jet velocity, up, for a jet diameter of,

D = 0.0051 m. The jet turbulence level in these experiments was 3% and the

distance of the nozzle to the pool surface level was 0.03 m. We note in Figure-19

that Eq. (29) agrees well with the data. In order to further test the validity of the

model we need to know the amplitude of the perturbation (i.e., the apparent

roughness of the liquid jet).

PART-lV: NUMERICAL RESULTS

THE. EU ,RIAN LIAGRANGIAN MODEL

The momentum balance for the bubbles in component form for a two-dimensional

steady-state flow can be written as:

DgygDf = Uy 
(30a)
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Dz. u (30b)

Dt gz

Dgug Dgug"

Pvb Dt PVb(U1I V)-UI + CVMPIVb (u_* V)u1 -Dt

iplAbCDlut - _Ugl(u - Ug) + (PI - pg)Vbg

+CLPIVbUr x (V x ud) (30c)

The so-called "dirty water" Wallis drag correlation was used to compute the

drag on bubbles:
6.3 (31)

CD = Re0.385

Eqs. (30) form a system of Ordinary Differential Equiations (ODEs) with the

position and velocity of the bubbles as dependent variables, and time as the

independent variable. In this form it is a initial value problem, with the position

and velocity of the bubble at time t=0 the initial conditions. We have used the well

known Tolmien solution for the liquid velocity field. This is a single-phase

calculation of a free jet using Prandtl's mixing length theory to model the

turbulence. The solid lines in Figure 20 show the trajectories of three bubbles with

different initial conditions for a lift force coefficient of 0.5 (solid lines) and a lift

force of 0.25(dashed lines).

Figures-20 and 21 show the emergence time and the maximum depth as a

function of the jet velocity. These are two quantities of interest for mass transfer

calculations. The emergence time is the time that the bubble is under water. We

see in Figure-21 that the general trend is that the emergence time increases with

the jet velocity. The maximum depth also increases with the jet velocity up to a

V=2.5m/s. For velocities higher than 2.5 m/s the maximum depth is not very

sensitive to jet velocity.
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THE TW-L, MODEL

Different phenomenologically-based models for two-phase flows have been

proposed in the past. The drawback of many of these models is that they are only

applicable to particular problems. On the other hand, mechanistically-based

models, commonly known as Two-Fluid Models (TFM), have been developed

[Ishii, 1975; Delhaye, 1968 and Drew & Lahey, 1979].

For an adiabatic plunging liquid jet entraining air bubbles, we have the

following local, instantaneous conservation equations:

Mass

a}Pk
--•-+ V*(Pk vk) = 0 (k=g,I) (32)

Momentum

5i(Pk Xk) + V*(Pk Vk-Yk) = V*--Tk + PkA (k = g, 1) (33)

where,

Tk -_ +a (34)

and, pg, Pl, Y-g, Vl, Pg, Pl, Ig, 1 are the phasic densities, velocities, pressures and

shear stresses of the gas and liquid phases, respectively.

These local, instantaneous conservation equations may be appropriately

averaged to obtain the two-fluid model. Ishii (1975] and Delhaye [1968] have

proposed time and spatial averages. However, the ensemble average [Drew &

Lahey, 1979] seems to be the most fundamental type of averaging. An ensemble

average is defined as,
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f xt) f f(M, t;t)P (4)dt (35S)

S

were f is the function we want to average, x is the spatial coordinate, t is time, 4 is

a parameter that determines a particular realization, P(4) is the probability

density function, and S is the set of all realizations. We note that P(4) satisfies,

IP()d4 = 1. 0 (36)
S

Let us define the phase indicator function, Xk(xt), such that it is unity if phase-k

is present at x and time t, and is zero otherwise.

Thus, the volume fraction of phase-k, ak, is,

ak = Xk (37)

The physical interpretation of ak is as follows; ak(x,t) is the fraction of all

realizations in which phase-k is present at location x at time t.

We refer the reader to Arnold [1988] and Park [1992] for complete details on

the derivation of the two-fluid model. We present here only the final results.

The ensemble-averaged continuity equation for phase-k is:

M/ass

a(ak~k)+v( --

+V*(akPkVk)=0 (k=gorl) (38)

where,

Pk = XkPk (39)
ak
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is the ensemble-averaged phasic density.

In this work we assume that the gas and liquid densities are both constant, thus,

Pk = Pk •k = Pk (40)

Next, jk, the ensemble-averaged phasic velocity, is given by:

- XkPk Yk Xk Yk (41)

akPk k

The ensemble-averaged momentum equation for phase-k is:

Momentum

at (kPkV-k-k)=V*[ak(;k +fRe)]

+CtkPkg+Mki (k = g or l) (42)

where, Tk, g, Mki are the averaged stress tensor, the acceleration of gravity and

the total interfacial forces, respectively. They are given by:

- Xk k (43)
Tk =" k

TRe =PkVYkVYk (44)

where, v'k is the fluctuation in the velocity of phase-k, and,

Mki =-Tk *V~k (45)

The ensemble averaged interfacial jump conditions are:

Interfacial Jump Conditions
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g(a+(g ))] (46)

We note that, for monodispersed spherical bubbles, Laplace's equation yields,

Pg - 2l =2/'Rb (47)

where, a is the surface tension and Rb the mean bubble radius. The bubble's

surface stress tensor, _, is given by [Park, 1992],

=1pi[as Vr vr + b s(_r*r )fI] (48)=-S

where, Vr = Vg . 1, is the average relative velocity, and, using inviscid flow

theory, the coefficients as and bs in Eq. (48) can be analytically computed for

spherical bubbles to be:

9 3
as 20 bs = 2 (49)

TURBULENCE MODELING

The total Reynolds stress tensor for the continuous liquid phase is given by

superposition as,

Re Re Re (50).! =-_I(SI) + -!I(SI) (0

where, for bubbly two-phase flows the bubble-induced shear stress is given by

[Arnold 1988],

01iD(BI) = •gP ail Irr + bl(-r"r (51)

where the coefficients a, and b1 can be analytically computed for spherical bubbles

to be,
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a =-1/20 b =-3/20 (52)

Re
We note that IR(Se) is the shear-induced Reynolds stress which comes from the

classical k-e model [Rodi, 1984]:

Dl~alk,(SI)] =V o,,,T VkI(SI)1 + al(PI - E)(53a)

Dt=+DItj~l V*r•k ] a,-!r'T Veil+ al(P. - eF) (53b)

where,

kl(BI) 1 • a C2 F 1_2 (54a)

k, = kl(sI) + kI(BI) (54b)

2klI(sI)
')1 = CAt Cd El (54c6

P1 = vt (V•1 +-r, V):Vv- (54d)

P Cie IPI(5e
P ekl( (e)

2
eE C2e E2/kI(SI) (54f)

Pr, = 1.3 (54g)

and [Rodi, 1984], CA = 0.5478, Cd = 0.1643, Cie = 1.44, C2e = 1.92 are the single-

phase flow k-e model coefficients.

Using these results, the Reynolds stress tensor is given by:

Re t

-_l(SI) = ~i L VXI + xlV (55)
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After averaging, we have more unknowns than equations. Thus, we need

to constitute some of the averaged quantities in terms of the state variables, ak,-•k

and Pk. This closure process is necessary because we have lost information due

to averaging and we must reintroduce the essential physics which was lost.

Cell model averaging was successfully applied to a dilute mixture of liquid

and gas bubbles by Arnold [1988] and Park [1992]. We divide the flow field into

"cells", each of which have only one spherical bubble inside. Using inviscid flow

theory we may compute the pressure distribution around the bubbles and thus

deduce the various interfacial forces. The assumptions are that both phases are

inviscid, incompressible and have constant thermophysical properties, the

bubbles are spherical and can be treated as a dilute dispersion of spheres, the non-

uniformities in the distribution of the dispersed phase are small and the velocity

gradients of both phases are small.

Using the results of Arnold [1988] and Park [1992] the resultant two-fluid phasic

momentum equations are:

Momentum Conservation - Gas Phase

at (agpgg) + V o (agpgygjg) =- agVpl
jt+

~VM gpi[(9+xg V)g{+Y V) 1]

-CrotOVgPlYr x V x vg - CLPlOxg~r x V x vI

-(C 1 + 02- 2Cp- 2bs) aggplr V-T + (a5 - 02) agPl-r" VYr

CD
+ (a - C2 )agPI(V * XYd) r + agPg " p Ai"' r 1x I - CTDPlklVag (56a)
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Momentum Conservation - Liquid Phase

a (alplyl) + V e (alplyly1 ) - aIVp1 + (Cp + bs + bl) pl~rI2 Vag

"+ CvMagP I(Ft +V V)-v avg (+ .*V)vi ]

"+ CrotagPlXr x V x -g + CLPlagyr x V x-jI + (C2 + al)agpl •r (V Yr)

"+ (C1 + C2 + 2bl) agPyr * VYr + (C2 + al) agPl Yr* Vyr

"+ (as + a,) p, r 9Vg) r + aiPi 9 + C PI A"'yr I Yr 1 + CTDPlkiVag (56b)

where both phases were assumed to be incompressible and the following values of

the closure parameters have been used mPark, 1992]:

a, = - 1/20 as =-9/20 b, = - 3/20 bs =3/20

CVM = 1/2 Cp =1/4 C, = 5/4 C2 = - 9/20

CTD = 0.1 CL= 0.05 Crot = 0.05

For numerical purposes it is important to rewrite Eq. (56a) as follows. For

the air/water flows under consideration Eq. (38) can be employed to show that the

left hand side of the gas phase momentum equation can be rewritten in

Lagrangian form as:

a V = pgag Dtggv (57)
t (gpegvg Pgag' Dt

Grouping the right hand side of Eq. (57) with one part of the virtual mass force in

Eq. (56a) we obtain:
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pgag Dgyg + CvmpI, a iv = (pg + 0Cmpi) Dg j+t = g Dt g(D

Notice that we have kept the other part of the virtual mass force associated with

liquid phase acceleration in the second term on the right hand side of Eq. (56a). It

has been found that writing the gas phase's acceleration as in Eq. (58) helps

numerical convergence.

Equations (56) were numerically evaluated using the finite difference

formulation of Patankar [1980] in the well-known PHOENICS code. The

dependent variables were calculated and stored at discrete points on the grid. To

prevent pressure "checker boarding" [Patankar, 1980] a staggered grid was used.

The velocities are calculated at the locations. The cell surrounding point P is

often called the continuity cell. The velocities, •7y and -z, were computed at the

cell boundaries and the pressure and void fraction, P, and X9, were computed at

the continuity cell center (P).

According to the differencing procedure, the conservation equations were

first integrated over the control volume that surrounds the node. The resulting

integrals were then approximated using the nodal values and algebraic difference

equations were obtained, where the discrete equations had an implicit

formulation.

For the boundary conditions we used the average axial liquid and gas

velocities, vlz and vgz, the liquid turbulent kinetic energy, 2 and the gas voidiz'

faction a g that were actually measured at the inlet of the integration domain.

Figure-23a shows the average axial liquid velocity, Viz. The open circles are the

experimental values at the inlet of the domain. The solid curve is the computed
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v1. at the axial position z = 2.5 mm (i.e., at the first velocity node), and y = 0.1 m

corresponds to the planar jet's centerplane.

Figure-23b shows the computed V-z at z = 31 mm. The open circles are

experimental points. We can see that the agreement is quite good. The spreading

of the jet is well predicted and the underprediction at the center line velocity is

similar to that observed in single-phase flows [Rodi, 1984]. Figure-23c shows the

computed •lz at z = 59 ram. The open circles are again experimental points, and

the trend is similar to Figure-23b.

Figure-24a shows the gas volume fraction as a function of the lateral

position. The open circles are the experimental values. The solid curve is the

computed ag at the axial position z = 1.25 mm (i.e. at the first gas volume faction

node). Figure-24b and 24c show the gas volume fraction as a function of the

lateral position at distances from the integration domain inlet of z = 31 mm and z

= 89 mm, respectively. We can see that the agreement is good, however, it can be

noticed that the model tends to overpredict gas dispersion. For example in

Figure-24c the experimental peaks are higher than the predicted ones and the

experimental center plane valley is somewhat deeper than predicted.

PART -V- SUMMARY AND CONCLUSIONS

Detailed measurements were taken of the three-dimensional void fraction

and liquid velocity fields beneath a plunging liquid jet. In particular, detailed

new LDA/FPDA. data have been taken of the air carryunder process associated

with a plunging cylindrical liquid jet. In addition, similar data (not reported

herein) was taken with the planar nozzle shown in Fig-25. The size distribution of

the entrained air bubbles has been measured directly with the FPDA system. It

was found that for a smooth jet the entrained bubbles were very small (db S 120
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gm). For this case the slip ratio was nearly unity, and the turbulent intensity of

the liquid phase was comparable to single-phase liquid jets.

The phase doppler anemometer system was found to be especially well

suited for small bubble size measurements in two-phase jets. With our particular

setup we could measure bubble diameters up to about 1 mm. Because of the

larger bubbles present, we did not use the FPDA to measure the bubble diameters

with the rough jet.

Indeed, for a turbulent (ie, rough) liquid jet the entrained bubble sizes were

of the order of d =- 2 mm, and the slip ratio was close to calculated values based on

the terminal rise velocity of a single bubble. Moreover, the turbulence intensity of

the liquid jet had two components, one due to shear-induced turbulence and the

other due to bubble-induced pseudo-turbulence. Both components of turbulence

were of the same order of magnitude.

The FPDA system was found to be especially well suited for small bubble

size measurements in two-phase jet flows.

A state-of-the-art two-fluid model obtained using ensemble averaging has

been derived and was closed using cell average model. This approach provides

equations for multiphase flows that are mechanistically-based (as opposite to

empirical). The rigorous derivation of the cell average model provides exact

constitutive equations for the inviscid limit. One does not expect the values of the

constants from cell model averaging to be correct for very viscous flows but they

provide a good framework from which to start. In particular, it is known [Wang

et al, 1987] that the lift coefficient, CL, decreases as liquid viscosity increases. In

this study, a lift force coefficient of CL = .05 has been used instead of the theoretical

inviscid limit value of CL = .25. All other parameter values used in this work
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corresponded to the inviscid limit values. The agreement with the experimental

data was remarkable.

The k-e model seems to be adequate for this calculation, however the

observed differences in phasic dispersion indicate some inadequacies in the

turbulence modeling which should be considered in future studies.

This report also presents the results of an analysis based on a non-singular

perturbation technique for the surface depression produced by a plunging liquid

jet. The first three terms of a Taylor series expansion in the Weber number have

been used to give the pool surface depression. This approximation of the surface

depression gives correct values for small and moderate Weber numbers (ie, We <

1). However, for We greater than unity, higher order terms may become

important and the analysis presented herein is no longer valid. The Bond

number appears as a parameter in the system of equations, thus no expansion is

necessary for the Bond number. Indeed the analysis presented herein is valid for

all Bo.

The results described in this report show that as the Weber number is

increased, the terms that gain importance (i.e., the terms of higher order)

correspond to a surface depression that is increasingly narrower in the horizontal

direction. For a Weber number of the order of unity the surface tension is no

longer able to keep the system stable and an Helmholtz instability leads to air

entrainment (Bonetto et al, 19931. That is, for values of the surface tension going

to infinity (i.e., Weber number going to zero), the slope of the surface is very small,

however, as Weber number is increased the slope also increases. For a critical

value of the Weber number, the slope of the surface is such that the surface

tension is not able to keep the deformed pool surface away from the plunging

liquid jet and air entrainment is produced.
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FI

We have assumed in this report that the position of the interface can be

written as Tr(x) , eq. 13a, that is a steady state exists where the position of the

interface is a single-valued function of the lateral position. For the critical value

of Weber number that corresponds to the threshold for air entrainment the

interface is not single-valued. Moreover, it is likely that the air entrainment

process involves transient phenomenon. Thus we believe that our analysis is not

really appropriate to compute the threshold value of Weber number for air

entrainment. However, we are able to describe the route to air entrainment

qualitatively.

We have seen that the higher the order of the position of the interface

iterate, the larger the maximum slope of the iterate. For small Weber numbers

the low order iterates dominate. As Weber number is increased, the slope of the

interface is increased as the higher order terms dominate. For some threshold

value of Weber number, Wet, the interface has a very large slope (ie, the tangent of

the interface is almost vertical). For We> Wet the inertia forces overpower the

capillary forces and the interface is no longer stable.

The results presented in this report cannot predict all details of the route to

the pool surface instability that produces air entrainment for two reasons. First,

it is not clear that the approximation for the surface depression is valid for Weber

numbers that are high enough to produce air entrainment. Second, the shape of

the surface, i(x), has to be a single-valued function of x, however it appears that

at the point where air entrainment commences, for every x (horizontal position)

there is more than one il (vertical position of the surface depression).

It appears that it would be useful to compute the surface position using an

appropriate multidimensional Computational Fluid Dynamics (CFD) tool having
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surface tracking capability. This will allow the relaxation of the restriction on

Weber number.

This report presents the results of a linear stability analysis for an inviscid,

irrotational and incompressible liquid jet impacting a static pool of liquid. It has

been shown that a Helmholtz-Taylor instability can occur and that this instability

may lead to air entrapment and carryunder. Moreover, it is shown that the

thickness of the annular air gap is not a function of liquid jet velocity, however

increasing the turbulence level of the liquid jet increases the wave action on the

surface of the jet which leads to increased air entrainment.

It appears that it would be useful to have future experimental research on

this topic focused on the effect of liquid jet viscosity, nonsymmetric situations, and

nonlinear phenomena. Moreover, it should be useful to couple this type of

analysis with the induced two-phase jet spreading problem below the surface of

the pool. This is probably best done using appropriate interface tracking

computational fluid dynamic (CFD) tools.
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